

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 700

Adaptive M-Shadow Model for handling Mobile

Database Transaction Processing

Romani Farid Ibrahim

Department of Computer information systems, Faculty of Information Technology,

Al Hussein Bin Talal University, Jordan

Abstract: Recent advances in wireless communications and mobile devices such as laptops, mobile phones, PDAs, etc, and their

cheap price and the emergence of many mobile applications have provided users with the ability to access data from anywhere. In

this paper, our concern is the management of disconnection in mobile transaction that access temporal database and/or spatial

database. M-Shadow (Mobile-Shadow) handles a compound (or a group) transaction that consists of groups of subtransactions

which may be independent or dependent. We adopted the M-Shadow to handle partially dependent subtransactions and to be

implemented as one application handles the three cases together (independent and/or dependent and/or partially dependent), and

taking in consideration the location dependency. M-Shadow uses of a notation of actionability, which differentiates the actions to

be taken during the transaction’s validation phase according to the types of affected attributes. We extended the actionability data

types to include Change-Passing and Location-time attributes. The M-Shadow technique increase the success probability of

transactions processed under optimistic concurrency techniques.

Keywords: Concurrency Control, Mobile Database, Transaction, Shadow paging, Saga, Caching, Compensation, Vital and Non-

vital transactions, Temporal database, Spatial database, GPS.

I. INTRODUCTION

 The mobile computing and moving objects area is very

interesting and active area of research, because it includes

many other subjects as networking concepts, operating

system concepts, database concepts, etc. Accessing data

anywhere-anytime-anyway will be real but this must be

consistent. The mobile database, or embedded database on a

mobile device, is starting to become an important player in

all practical fields, for example, business, traveling, police,

military, medical, etc. The data will be entered

approximately in its real time, no delay between the events

time and the entering time to the database.

 Mobile transaction is a transaction performed with at

least one mobile host takes part in its execution [6]; also, it

may be defined with perspective of its structure as a set of

relatively independent (component) transactions, which can

interleave in any way with other mobile transactions [7].

The mobile user, by nature, is moving from one place to

another so the mobile transaction should follow the user

anywhere, which is not supported in distributed database

transactions.

 As an example of applications that uses mobile

transaction, we are considering mobile hosts are laptop

computers belonging to members of a big salespersons

team. The salesperson performs a compound transaction

that handles a customer big order which consists of a group

of independent sub-orders and/or a group of dependent sub-

orders and/or a group of partially dependent sub-orders.

Also these transactions can be location dependent or

location independent.

 We view a transaction as a program in execution in

which each write-set satisfies the ACID properties [1], and

the program that updates the database as a three folds

module (phases): reading phase, editing phase, and

validation and write phase. The main question we attempt to

answer in this paper is, if the data on the primary server has

been changed while the mobile unit (MU) is disconnected

or working offline, how can the transaction continue its

work?

 The proposed M-Shadow technique is an optimistic

concurrency technique constructed on the shadow paging

technique that is used in deferred database recovery and

other OS techniques. Shadow paging technique uses two

copies of data items, the shadow copy (original), and the

edited copy (current). When a transaction commits, the

edited copy becomes the current page, and the show copy is

discarded, otherwise, the edited copy is discarded and the

shadow copy is reinstated to become the current page once

more.

This paper is organized as follow: Section I gives the

introduction of the mobile database system and mobile

transactions. Section II is helpful to understand the

background of related work. Section III explains the

important points we considered to propose the new model.

Section IV explains the M-Shadow technique. Section V

explains summary of the implementation and performance

of the proposed technique and the last section VI concludes

the paper and followed by the references.

II. RELATED WORK

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 701

 Most of the work handling mobile transactions as

(Kangaroo, Reporting and Co, Moflex, Escrow

techniques…) assume that the handoff process is under the

mobile support station (MSS) responsibility [9], and the

mobile support stations has the capability to transfer control

and transaction history among servers while handoff

procedure as [5], [7], [8]. However, this approach has many

limitations, such as, if the mobile unit moves relatively slow

such that the probability of the commitment protocol

terminating at the same cell is high. If it is fast moving then

a frequent migration of the control may increase the

protocol latency and thus its vulnerability [9]. In addition, if

a big number of MUs move among cells, so that most of the

response time is spent in transferring data among cells.

 Most of the used methods apply the concept of

compensation. A compensating transaction is a transaction

with the opposite effect of an already committed

transaction. It is intended to undo the visible effects of a

previously committed transaction, e.g., cancel car is the

compensating transaction for rent car. A problem lies in the

fact that compensation does not reserve database

consistency [10]: for example, suppose that the account

initially has $X, and then a withdrawal transaction of $Y

(where X >=Y) is executed and that the transaction will be

compensated later. If another transaction commits applying

an interest rate on the balance before the compensation has

been performed (i.e. when the account has $(X-Y). The

interest transaction was applied on a kind of dirty data, and

therefore database consistency will not be preserved.

 Most of the papers assume rarely changing data

(Insurance data, Patients data, etc); the mobile unit has

replica or caching subsystem. And, the mobile replica is

logically removed from the master copy of the object and is

only accessible by the transaction on the mobile unit [11],

so that they do not consider the case of changing data on the

primary server while the transaction processing. In addition,

they assume long disconnection or working offline and do

not consider short disconnection case.

III. IMPORTANT CONSIDERATIONS

 In optimistic methods using shadows, transactions are

dependent on all data items by the same degree. A minor

change in an item is sufficient to abort a transaction

handling hundreds of actions on thousands of data items.

Consequently, the probability of a transaction to fail is very

high. This failure probability increases with the increase of

the number of data items, the disconnection time, and the

number of concurrent transactions. This is why the shadow

technique is not frequently used in transactions

management.

 The M-Shadow technique we propose; offers a solution

for the preceding problem and gives the opportunity to

widely manage transactions of difficult types such as long

and/or mobile transactions. In M-Shadow technique,

transaction's validation is not tightly coupled to the

eventuality of encountering modifications (done by other

transactions) on the values of one or more of its data items.
 In this section, we describe the important points we

considered to design our technique for handling mobile

transaction with disconnection. Which are: the enterprise

constraints acceptance range, and the effects of attributes

types on the transaction behavior (actionability), linear and

non-linear applications, and the structure of M-Shadow

transaction.

A. Enterprise Constraints Acceptance Range

 Enterprise constraints also known as business rules,

which are additional rules specified by users or database

administrators that the data must satisfy [14]. Usually,

enterprise constraints include relational operators as (<>,

<,>, ≤, ≥), which has a range of values that the data-item

can be changed within it. For example, a sold-amount value

can be assigned any value from a range of values.

 By using this property of enterprise constraints, in

addition to, the characteristics of the attributes, we can build

an algorithm that allows transactions to continue their works

even if the shared data items at the primary server have been

changed. So that we avoid roll-backing of transactions, if

the changes are within the acceptable range of the data-item.

B. Actionability and Transactions Behavior

 In M-Shadow technique, transaction's validation is not

tightly coupled to the eventuality of encountering

modifications (done by other transactions) on the values of

one or more of its data items. Transaction behavior at run

time depends on some characteristics of its set of data items.

We use a new notion called actionability to describe how a

transaction behaves if a value-change is occurred on one or

more of its attributes during its processing time and by other

transactions. Other than Key attributes (K), actionability

classifies the data items used by a transaction into five

types: change-accept, change-aware, change-reject, change-

passing (P) and location-time (L) attributes.

Change-Accept (A): Any attribute retrieved during the

read phase to complete and explain the meaning of the

transaction. If it is potentially changed (by another

transaction) while the transaction is processing, it does not

have any effect on the transaction behavior.

Change-Reject (R): This type of attributes is subject of

periodical changes (e.g., Currency values, Tax rates, etc.).

The value of such attribute remains constant for long period.

But once it is changed during the transaction life time (by

another transaction), it affects severely the transaction

behavior.

Change-Aware (W): This type of attributes is subject to

change more frequently by different concurrent transactions.

A modification on the value of this type of attributes may be

accepted if the new value still in the acceptance range.

Otherwise, the transaction aborts.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 702

Change-Passing (P): this type of attributes is not

basically part of the transaction data, but the result of the

transaction processing is passed to this type of attributes.

For example, in an insurance company (or many other

applications) all different departments are related through

the financial department, so that, all insurance transactions

in all departments should pass their financial values to the

financial attributes. Usually this subtransaction is succeeded

because it only increases the financial attributes by the new

amounts and the previous change and the current values of

this type of attributes doesn’t effect on the transaction data

or behavior. But if the subtransaction that changes their

values is failed for any reason, it causes the main transaction

to fail.

Location-time (L): this type of attributes is used for

handling location dependent processing.

 The previous three types of attribute actionability

(Change-Accept (A), Change-Reject (R), and Change-

Aware (W)) are to be declared for each transaction type. If

omitted, the complete set of attributes will be handled as

Change-Reject type (the default actionability type), a case in

which the M-Shadow works like the traditional Shadow

technique. Also, they are retrieved at the read phase to be

edited and to apply the function of the transaction on it. It is

also important to note that a transaction may generate a new

data item (G) as a function of the three previous types of

attributes. The M-Shadow technique handles these attributes

exactly as before:

 If a Change-Reject attribute(s) is modified during the

transaction processing, the complete transaction

aborts.

 But else, if a Change-Aware attribute(s) is the

modified attribute and the changes are within the

acceptance ranges, the transaction is recalculated and

continues, otherwise it aborts.

 But else, if a Change-Accept attribute(s) is the

modified attribute, the transaction continues and

writes values.

 Table (1) illustrates the applied validation rules. If the

Change-Accept attribute and the Change-passing attributes

are changed or not, it doesn't have any effect on the

transaction behavior that updates the Change-Aware

attributes. Also, Change-Accept attributes are very rarely

changing attributes, for example, item-description,

employee-name; Birth-Date, etc., are approximately fixed

value attributes.

Rule: If T1, T2 are concurrent transactions, T1 changes a

shared Change-Reject attribute and T2 changes a shared

Change-Aware attribute that belong to a normalized

database then:

 If T1 commits before T2 then T2 must abort.

 If T2 commits before T1 then T1 can continue its

processing.

The reasons behind using the actionability include:

 A transaction usually update a part of the data set it

uses, the other part of the data elements is asked by

the transaction to control the transaction. These data

items are read only items and a change in such

elements should not prevent the execution of the

transaction.

 Our concern is on the transactions that update

Change-Aware attributes, which have acceptable

range. An encountered change in these attributes may

affect the outcomes of the transaction but not aborts

entirely its execution.

 The usage of mobile transactions is still limited to

salesperson and inventory applications which are, by

nature, applying short transactions with little

attributes. This fortunately complies well with the M-

Shadow concept.

C. Location dependent transaction

 To handle location dependent transactions, we assume

that the mobile database system of the company can connect

to a Global Positioning System (GPS) that determines the

location of the mobile unit (latitude/longitude) and answers

the location dependent queries [16]. For example, if the

salesperson decided to visit his customers according to their

nearest from his current location and typed the query: Find

the nearest customer (address) to my current location? The

problem here is that the customer address is in the temporal

database not in the spatial database. To answer this query,

the query analyzer should perform the following steps:

retrieve the customers primary keys and addresses (assume

streets), pass it to the GPS, the GPS compares these data

with its database and arranges the data according to the

current location of the mobile unit and returns the result to

the mobile database system. Based on the returned result

from the GPS, the customer details are retrieved from the

mobile database system and are passed to the mobile unit.

 We assume that the table that includes the history of

transactions should include attributes to store the X, Y

(latitude/longitude) location of the mobile unit and the time

of issuing the transactions. These data are stored for the

purpose of retrieving and for future analysis. These data

does not have any effect on the transaction behavior or on

other attributes that are accessed by the transaction. We call

TABLE 1: ACTIONABILITY TRUTH TABLE

T

Succee

d

Integrit

y

Constr

ains

Violati

on

Change in

Change-

passing

Attribute

Change-

Aware

Attribute

Change-

Reject

Attribute

Change-

Accept

Attribute

Y NA* Y / N N N Y / N

N NA Y / N N Y Y / N

Y N Y / N Y N Y / N

N Y Y / N

 *NA means Not Available

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 703

these data a transaction geographic data and the other data a

transaction basic data to differentiate between them. These

data are different from the data that describe location and

time attributes related to a specific transaction as: location

of shipment, location of receiving, airplane departure time,

etc. So that, we extend the actionability classification of

attributes to include this type of attributes by adding a new

type of attributes called location-time-attribute (L).

D. Actionability advantages

 The classification of attributes according to the

actionability type has the following advantages: The DBMS

can perform the update process automatically based on the

actionability type of the data for all applications. A

reasonable increase in the succeeded transactions ratio. This

technique can be useful for some types of real time

applications.

E. Linear and Non-Linear Applications

 Most of papers that handle transaction processing

assumed implicitly that all the applications increase or

decrease the attributes (in our notation change aware

attributes (W)) by ∆ value. But the applications that update a

change aware attributes (w) can be classified based on the

mathematical functions that is used to calculate the new

values of the change aware attributes into two types:

 Linear transactions: that use the linear function f(x)

= mx + b for the calculation of the new value of

change aware attribute. We assume that the m value

usually equals 1, and the b is the value of the changes

that transaction are performed on the w attribute,

which is known as delta ∆(w), and the function can be

written as f(w) = w ± ∆(w), where w is the original

value of the change aware attribute. The function

includes only add or/and subtract operations (+, -).

 Non-linear transactions: that use other functions that

differ from the form of f(w) = w ± ∆(w). They can

include the functions: Power, Div, Multiply, Len,

Log, Sqrt, Sin, Cos, Tan, etc. The semantic of these

types of applications require to recalculate f(w)

according to the current (w) at the validation and

write phase at the primary server.

IV. THE ADAPTIVE M-SHADOW MODEL

In this section we explain the structure of the M-Shadow

transaction, the processing of the validation test,

summarizing the M-Shadow technique steps for linear

transactions, how the system determines type of transactions

(linear or non-linear), and advantages and limitations of the

M-Shadow technique.

We assume that the system is partially replicated

distributed database system, because it is the most practical

environment. We also assume that the mobile unit has a

software package that can contact with the primary server

and send and receive data from it. We classified the

computers that are involved in the update transaction into

two groups:

 The basic group: consists of primary site and mobile

unit. They are enough to complete the transaction.

 The complementary group: consists of all the

remaining sites (replicas) that are involved in the

update operation and we assume using lazy

replication protocol for refreshment.

A. M-Shadow Transaction Structure

 M-Shadow relaxes the original saga constrain which is

either all subtransactions completed or all subtransactions

compensated for their effects on the database. By collecting

subtransactions into groups and handles each group

according to the semantic of the relationship among them

without using compensation, therefore a subtransaction

effects is limited to its group not to the entire M-Shadow

transaction.

 If the subtransaction alone is independent, then, when

it is grouped with other subtransactions in one

compound transaction (CT), it has three cases:

o It does not lose its independency property, so it

can commit alone.

o It loses its independency property, and it has a

dependency relationship with its CT. IF it fails,

the CT fails, if the CT fails for any reason, the

subtransaction fails also.

o If it is a non-vital subtransaction, it can abort

alone and doesnot effect on vital subtransactions

of the CT and the CT can commit without it.

 No use of the compensating subtransactions

Figure (1) shows an example of M-Shadow transaction

which consists of three subtransactions groups. The first

group is a group of logically independent subtransactions

(S1, S2, and S3), the second group is a group of logically

full dependent subtransactions (S4, S5, S6) and the third

group is a group of partially dependent subtransactions

since s8 is a non-vital transaction while s7 and s9 are vital

subtransactions. There is no dependency relationship among

these three groups, but the compound transaction can

include any number of groups.

B. Description of Validation Test

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 704

The validation test compares the original values of some

data-items with its current values on the primary server,

which succeeds in three cases:

 No change, which means that the original values are

equal to the current values on the primary server.

 Constrained change, which means that some Change-

Aware attributes has been changed by other

transactions during disconnection (working offline)

time but still these changes within the integrity

constraint acceptance range.

 Insignificant change, which means that some Change-

Accept attributes has been changed by other

transactions during disconnection (working offline)

time or during the execution of the transaction, but

these Change-Accept data-items does not effect on

the current transaction.

The validation test fails in the following two cases:

 Significant change, in which we detect that some

Change-Reject data items have been changed during

the transaction processing and/or disconnections.

 Out-of-Constraints change, in which we detect that

one or more Change-Aware data items have been

updated in such a way that the global changes put the

stored values out of the acceptance ranges.

C. Summary of the M-Shadow Technique Steps for

Linear Transactions

In Location Dependent transaction

 Get mobile unit location data (x_loc, y_loc)

 Get the server identification data

 Retrieve datasets from the current server of the

current cell (called the home-server of the transaction

or transaction primary server).

In location independent transaction

 Retrieve the current dataset from the primary server

(Reading phase)

In both cases of location dependency

At Mobile Unit side:

1. Copy the retrieved dataset as a shadow copy.

2. The user edits the dataset on the shadow copy [modify,

add, delete] (Editing phase)

3. Send the original read-set, the edited-set (shadow copy

changes), the read-query and, and the update query to

the primary/home server (subtransaction by

subtransaction).

 At Primary Server Side:

4. Implement the validation and write phase:

 Call validation-write-1 procedure (as a part of the

DBMS) or

 Call validation-write-2 procedure (as a stored

procedure at the primary server).

1) Independent Case

5. If one subtransaction fails (disconnection, integrity

constraints, etc.)

At Primary Server Side:

 Discard the current write-set subtransaction.

At Mobile Unit side:

 Removes the subtransaction shadow data-set from the

shadow copy.

 Send next subtransaction data to the primary server.

 Short disconnection (the user doesn't close the

program which means all variables and data-sets still

available in the main memory): Try to reconnect.

 Long disconnection(the user wants to close the

program): The program saves the data-sets (the

original data-set and the remaining elements of the

shadow data-set) as XML files on the mobile unit

secondary storage to be retrieved at the reconnection

time.

When reconnection with the primary server is available:

After short disconnection:

 The program resends the write-set data for the

subtransaction, which the disconnection happened through

its update only. The primary server restarts the write-set

subtransaction as in step 4.

After long disconnection:

 The program loads the XML files and starts a new

independent write-set group transaction for the loaded data-

sets (original and shadow) as in step 3.

2) Fully Dependent Case

6. If one subtransaction fails:

At Primary Server Side:

 Rollback the current and all the previous write-set

subtransactions of the group.

At Mobile Unit side: because of

 Integrity constraints violation: Drops its data-sets and

clears the memory to start a new transaction.

 Short disconnection: Try to reconnect.

 Long disconnection: The program saves the data-sets

(the original data-set and the shadow data-set) as

XML files on the mobile unit secondary storage.

When reconnection with the primary server is available

After short disconnection:

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 705

 The program reissues the dependent-write-set group

transaction as a new transaction as in step 4.

After long disconnection:

 The program loads the XML files and starts a new fully

dependent write-set group transaction for the loaded data-

sets (shadow and original) as in step 3.

3) Partially Dependent Case

 The transaction processing for partial dependent group

is similar to the full dependent group procedure with

neglecting the non-vital subtransactions in case of its failure

(ex, S8). The partially dependent group transaction fails in

case of failure of any of their vital transactions (ex, S7, S9).

4) Location Dependent Case

 In general, as the validation and write phase of

the M-Shadow model for location independent

data.

 In addition, in long disconnection case, the

mobile unit saves the transaction home-server

identification data as XML file.

At reconnection time

 After long disconnection case, the mobile unit

loads the datasets and the transaction home-

server identification data from the XML files.

 Connect with the home-server of the transaction

from the current cell.

Validation-Write Procedure-1 (A General Validation

Algorithm to Be Put as a Part of the DBMS)

Validation-Write-Phase (Record original, Record shadow,

String read-query, String update-query)

 In what follows we show the core functions of the

technique, which use the actionability rules to perform the

validation test. Its inputs are original data-set, shadow

dataset (shadow-rec), read-query, update query, and the

actionability types for attributes if they are not declared

while tables creation. If the validation test succeeds, the

transaction commits, otherwise the transaction aborts.

Aware-Update (integer flag)

{

For each change-reject-attribute(i) in shadow-rec

 If Current.R(i) <> Shadow.R(i) then

 Flag = -1

 Goto par-out

 End if

Next-For

 For each change-aware-attribute(i) in shadow-rec

 ΔW(i) = Shadow.W(i) - Original.W (i)

 Current.W(i) = ΔW(i) + Current.W(i)

 If (check-constraints(current.W(i)) = False) then

 Flag = -2

 Goto par-out

 Next-For

Par-out:

Return (flag) }

Validation-Write Procedure-2 (Stored Procedure at the

primary server)

Sub Validation-Write (ti)

 {

Begin write-set subtransaction (ti)

 Hold exclusive lock (ti)

 Read data from active database for (ti) as current

 If change-reject data-item is changed then

 Rollback transaction (ti)

 Else

 Calculate Δ(x) = Shadow(x) - Original(x)

 Current (x) = Current (x) + Δ(x)

 Check-validity (Current (x))

 If check-validity success then

 Write shadow data-set to the current database

 Commit Trans (ti)

 Else

 Rollback transaction (ti)

 End IF

 End IF }

Table 2 shows an example to describe how the validation

and write phase can be applied and assume linear

transactions for simplicity. The example shows a bank

transaction that transfers $400 from account X to account

Y. We use the notations of actionability, K denotes the Key

attribute, A denotes a Change-Accept attribute, R denotes

a Change-Reject attribute, W denotes a Change-Aware

attribute, G denotes a generated attribute, and the

subindexes o denotes the original value, s denotes the

shadow value and c denotes the current value at the primary

sever.

5) Determination of transaction type (Linear or

Non-Linear)

 To determine if the transaction is linear or non-liner, we

need the program at the mobile unit to be more intelligent

and performs more operations than data entry validation.

The mobile unit determines the type of the transaction based

on the mathematical function that is used to calculate the

new value of the change aware attribute.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 706

If the mathematical function includes only addition

and/or subtraction operators (+, -), then the transaction is

linear otherwise it is non-linear. The following function, we

called it token-analysis, performs this analysis. The mobile

unit passes the result of the analysis to the server as a

parameter.

Function token_analysis(string fx , int tf)

{ char ch, token [80]; int I= 0 ;

 While (not end of string fx) do

{

 Ch = getchar(fx)

If ch != ' ' then

 Token [i] = ch;

 I++;

Else

If token = ('^ ' or '/ ' or '*' or 'log' or 'len' or 'sin' or

'cos' or 'tan') then

 tf = 1 /* which means non linear function

 Else

tf = 0 /* which means linear function

 End if

End if

} /* while loop

Return (tf) }

The validation-write procedure will be as follows:

Validation-Write-Procedure (Record original, Record

shadow, String read-query, String update-query, integer

Lflag)

Aware-Update (integer flag)

{

 For each change-reject-attribute(i) in shadow-rec

 If Current.R(i) <> Shadow.R(i) then

 Flag = -1

 Goto par-out

 End if

Next-For

For each change-aware-attribute(i) in shadow-rec

 If Current.W(i) = Original.W (i) then

Current.W(i) = shadow(W(i))

 Else

If Lflag = 0 then

ΔW(i) = Shadow.W(i) - Original.W (i)

 Current.W(i) = ΔW(i) + Current.W(i)

 Else

 Return (current.W(i))

 Call non-linear(current.w(i))

 Goto par-out

End if

 End if

 If (check-constraints(current.W(i)) = False) then

 Flag = -2

 Goto par-out

 End if

Next-For

 Par-out:

 Return (flag) }

 Table 3 shows an example that explains how the M-

Shadow technique handles both linear and non-linear

transactions.

In table 3, T1 is applied as a linear transaction and T2 as

a non-linear transaction. Both transactions decrease the

value of the change-aware attribute (X) by 40 units, and

both cases recalculate the new value (X). In the linear case,

the recalculation is done by applying Δ(x). But in the non-

linear case, the recalculation is done by passing the current

value (X) at the primary server to the mobile unit which

applies the mathematical function of the application that

uses to calculate the new value of the change aware attribute

(X). Both cases, linear and non-linear are serializable. For

simplicity in the previous example, we used f(X) = X* 8/10,

but it can be any function of the non-linear functions as f(X)

= Xn or f(X) = log(X), etc. The logic that has been

TABLE 2: SALES TRANSACTION.

Read-Phase:

 K, A, Ro, Wo

10 , abc, 25 , 800

Edit-Phase:

 K, A, Ro, G,

 F1(Ro,g) Δ(W)

 Δ(W) + Wo = Ws

10, abc, 25, 3

 F1(25,3) -50

800 – 50 = 750

10,abc,25, 3, 750

Validation and Write Phase:

Current Value at Primary Site:

 K, A, Rc, Wc

10, abc, 25, 600

Validation Test:

 If Rc <> Ro then

 Rollback (t)

 Else

 Δ(W) = Ws – Wo

 Wc = Wc + Δ(W)

 If(check-constraints(Wc) then

 Accept Wc ,G

 Commit (t)

 Else

 Rollback (t)

 End if

 End if

 25 : 25

-50= 750 -800

550 = 600-50

check-constraints(550)=

True

 Accept 550 , 3 ,

F(25,3) , -50

 Commit (t)

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 707

applied on this function can be applied using any other non-

linear function.

 Figure (2) summarizes the M-Shadow model in a

graphical representation. It shows the transaction processing

between the mobile unit and the primary server. The

application starts by asking the mobile user if the new

transaction is location dependent or independent. If it is

location dependent, the mobile unit sends a query and

receives the response from the GPS system. Then the

mobile user starts the edit phase as location independent

transaction. The application determines if the transaction

uses liner or non-liner functions.

 The primary server performs the validation phase under

exclusive-lock. If the data does not change at the primary

server, it accepts the shadow data and copies it as a current

data. If the data at the primary server changed, it checks the

linear-flag, if its value is 0, which means linear transaction;

it calculates the new value of the change aware attribute by

calculating the difference between shadow and original

values and add it to the current. If linear-flag is 1, which

means non-linear transaction, it returns the current-value of

the change aware attribute to the mobile unit to be

recalculated at the mobile unit and re-passed to the server

after recalculation. In this case, the new value of the

change-aware attribute will be validated that it doesn't

violates the enterprise constrains only, because validation

phase is under exclusive-lock.

6) Advantages and Limitations of the M-Shadow

technique

 The advantages of using the shadow technique in

general and the M-Shadow technique are:

1. Increase the performance of the system, by

increasing the success probability of transaction by

allowing transaction to continue its work even

after disconnection and changing data on the

primary server.

2. No transfer of logs or transaction history among

sites. Only external files (XML files) would be

saved on the mobile unit and will be deleted when

the transaction finished.

3. Recovery for active transactions at failure time,

which DBMS recovery manager does not do.

4. Decrease the programming time for applications,

because the DBMS performs the update process.

5. No need to load the mobile unit with DBMS,

replica and synchronization of replica.

6. No storage lost on the primary server or on the

mobile unit, because after the transaction

committed or roll backed, the program deletes the

XML files.

7. The load on the primary server would be more lite.

8. More control over the network disconnection,

especially in wireless networks which its property

is frequently disconnection.

9. All ACID properties are reserved in the dependent

case, and semantic ACID properties are reserved

in the independent case.

10. This technique decreases the deadlock rate, or

approximately, avoids the deadlock problem,

because the locking of data-items at the primary

server is very short and does not use shared lock.

TABLE 3: LINEAR AND NON-LINEAR TRANSACTIONS.

T1 (Linear) T2(Non-Linear)

Read Phase:
 Xoriginal = 200, X >=
0

Edit Phase:
 Xshadow = X-40= 160

Validation Phase:
 Xcurrent = 50

Δ(x) = Xshadow – Xoriginal

- 40 = 160 - 200

Xcurrent = Xcurrent + Δ(x)

 10 = 50 -40

Check-Constrains (10(

Commit

Read Phase:
 Xoriginal = 200, X >= 0

Edit Phase :
 Xshadow = X* 8/10 = 160

Validation Phase:
 Xcurrent = 50

Send (Xcurrent)

Accept (new-Xcurrent) from the
client-agent (50 *8/10= 40)

Check-Constrains(40(

Commit

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 708

Therefore, it increases the performance of the

system.

11. It supports spatial databases transaction

processing.

 The limitations of the M-Shadow technique are: it is

designed for commercial applications that have a few shared

data-items among transactions and the validation test is not

suitable for some real-time applications.

IV. SUMMARY OF IMPLEMENTATION AND

PERFORMANCE EVALUATION

 To evaluate the effects of using the actionability types

and rules, we used the simulation program Benchmark

Factory for Databases, but it does not allow to change data

while the simulation process is running. So that, we

developed the M-Shadow model with and without

actionability. We found that, in the independent case and

without actionability, the transaction that fails because of

any data change at the primary server; it succeeds when the

actionability types and rules are applied, that increases the

number of succeed transactions and the success rate.

 Also, in the dependent and in partially dependent cases

and without actionability, the group transaction that fails if

one of its vital subtransactions fails because of any data

change at the primary server; it succeeds when the

actionability types and rules are applied. So that, using the

actionability types and rules increase the performance of the

system by decreasing the number of aborted transactions.

 We implemented a sales application that uses the M-

Shadow technique as a location independent case using

Visual Basic .Net and SQL Server 2005 because they

support many new features as writing and reading XML

files. We assume that the replication handling is solved as a

distributed database problem using the lazy replication

technique among fixed hosts.n

V. CONCLUSION AND FUTURE WORKS

 In M-Shadow we increase the transaction success

probability, this by consequence, raises the performance of

the system. Actionability classifies the data elements

handled by a transaction according to how much a change

on these elements affects the transaction behaviour. It

doesn't transfer logs or transaction history among sites and

it isn't based on compensation concept. It differentiates

between short disconnection and long disconnection. It

decreases the programming time for applications. So, it is

suitable for handling mobile transaction with disconnection.

Finally, we described why validation and write phase should

be run under exclusive lock.

 Future research will extend this work to support

complex business applications that include a big number of

shared data items and complex computations, dependency

among group transactions, parallel processing and real-time

environments. Also, we will study how to find the optimal

solution for selecting the next server in a shared area among

many servers to decrease the number of disconnection. In

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 1, Issue 9, November 2012

Copyright to IJARCCE www.ijarcce.com 709

addition, security of mobile transactions will be

investigated.

REFERENCES

[1] Romani Farid Ibrahim, Handling Disconnection in Mobile

Database Transaction, The 5th International Conference on

Application of Information nd Communication Technologies

[1] (AICT2011), Azerbaijan, Baku, 2011.

[2] Osman Hegazy, Ali El Bastawissy and Romani Farid Ibrahim,

Handling Mobile Transactions with Disconnections using a

Mobile-Shadow Technique, Proceedings of the 6th

International conference of Informatics and Systems (INFOS

2008), Faculty of Computers & Information-Cairo University,

March 2008.

[3] Osman Hegazy, Ali El Bastawissy and Romani Ibrahim, A

Programming Solution for Moving Mobile transaction,

Proceedings of the 6th International Enformatika (IEC 2005),

Budapest, Hungary, October 2005.

[4] Osman Hegazy, Ali El Bastawissy and Romani Ibrahim,

Technique for Handling Transactions that Move among Hosts

in Mobile Databases, Proceedings of the International

Conference on Computational Intelligence (ICCI 2004),

Istanbul, Turkey December 2004.

[5] M. Dunham and A. Helal, A Mobile Transaction Model that

Captures both the Data and Movement Behaviour, Mobile

Networks and Application (MONET), pp149–162, 1997.

[6] Gary D. Walborn and Panos K. Chrysanthis, PRO-MOTION:

Management of mobile transactions, Proceedings of ACM

symposium on Applied computing April 1997.

[7] P. K. Chrysanthis, Transaction Processing in a Mobile

Computing Environment, Proceedings of the IEEE Worskhop

on Advances in Parallel and Distributed Systems, 1993.

[8] Yin-Huei Loh, Takahiro Hara, Masahiko Tsukamoto, Shojiro

Nishio, Moflex Transaction Model for Mobile Heterogeneous

Multidatabase Systems, Proceedings of the symposium on

Applied computing, ACM, March 2000.

[9] Nadia Nouali, Anne Doucet and Habiba Drias, A Two-Phase

Commit Protocol for Mobile Wireless Environment,

Proceedings of the 16th Australasian Database Conference

(ADC 2005), Australian Computer Society, vol. 39, pp135–

143, 2005.

[10] A. Elmagarmid, J. Jing, J. G. Mullen and J. Sharif-Askary,

Reservable Transactions: An Approach for Reliable

Multidatabase Transaction Management, Technical Report

SERC-TR-114-P, Software Engineering Research Centre, April

1992.

[11] S. Mazumdar and P.K. Chrysanthis, Achieving Consistency in

Mobile Databases through Localization in PRO-MOTION,

Proceedings of Int'l Conference and Workshop Database and

Expert Systems Applications, (DEXA), IEEE, 1999.

[12] Tim Edmonds, Steve Hodges and Andy Hopper, Pervasive

Adaptation for Mobile Computing, Proceedings of the 15th

International Conference on Information Networking, 2001.

[13] M. Satyanarayanan, Fundamental Challenges in Mobile

Computing, Proceedings of ACM Symposium on Principles of

Distributed Computing, 1996.

[14] Thomas M.Connolly and Carolyn E.Begg, Database Systems-

A Practical Approach to Design, Implementation, and

Management”, Addison Wesley, , pp 570-595, 2002.

[15] Jose Maria Monteiro, Angelo Brayner and Sergio Lifschitz, A

Mechanism for Replicated Data Consistency in Mobile

Computing Environments, Proceedings of ACM symposium on

Applied computing, Seoul, Korea, pp 914-919, March, 2007.

[16] Vijay Kumar, Mobile Database Systems, John Wiley & Sons,

pp 113- 197, 2006.

Biography

Romani Ibrahim received the B.A. in

computer and information system from

Sadat Academy for Management Science,

Egypt. M.Sc. degree in computer science and Ph.D. degree

in information systems from Cairo University, Egypt. He is

an Assistant Professor in the department of computer

information systems, Faculty of Information Technology, Al

Hussein Bin Talal University, Jordan (by contract). In

Egypt, he works in the High Institute of Computer Science

and Information - City of Culture and Science- 6 October

City. Egypt. He is a member of ACM. His research

interests include distributed and mobile database systems,

transaction processing, data warehousing and information

security.

	OLE_LINK1
	OLE_LINK2

